Investigation of porosity and permeability effects from microstructure changes during limestone dissolution

Catherine Noiriel^{1,2}, Philippe Gouze¹ and Dominique Bernard³

¹ Laboratoire de Tectonophysique, ISTEEM, CNRS-Université Montpellier 2, France

² Ecole des Mines de Paris, CIG, Fontainebleau, France

³ Institut de Chimie de la Matière Condensée de Bordeaux, CNRS, Pessac, France

Abstract. We studied experimentally the dissolution of a porous limestone core during CO₂enriched water injection. We measured the changes in porosity and permeability arising from modifications of the pore network geometry and the fluid-rock interface. A methodology based on periodic X-ray microtomography imaging was implemented to record the evolution of the timeand scale-dependent microstructures with a spatial resolution of 4.91 µm. Two processes were successively involved in the rapid permeability increase of the sample, as documented from microscale to core-scale measurements. First, the microcrystalline phase was partially dissolved, associated with displacement of mineral particles. During this process, the exponent *n* of the power law $k \sim \phi^n$ decreased continuously. Secondly the sparitic phase dissolved, accompanied by a decrease of the pore wall roughness and an increase of the pore connectivity. This second period was characterized by a constant value of *n*. The reactive surface decreased noticeably during the transition from the microcrystalline to the sparitic dissolution periods, whereas the effective porosity increased strongly.