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• In surface sediments, the fate of As is controlled by abiotic and biotic reactions.
• Studies dedicated to experimental speciation of As in pore waters remain scarce.
• The role of reduced sulfur species on As speciation is still not fully understood.
• Alternative sampling and in situ measurement techniques must be developed.
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The fate of arsenic — a redox sensitive metalloid — in surface sediments is closely linked to early diagenetic
processes. The review presents the main redox mechanisms and final products of As that have been evidenced
over the last years. Oxidation of organicmatter and concomitant reduction of oxidants by bacterial activity result
in redox transformations of As species. The evolution of the sediment reactivitywill also induce secondary abiotic
reactions like complexation/de-complexation, sorption, precipitation/dissolution and biotic reactions that could,
for instance, lead to the detoxification of some As species. Overall, abiotic redox reactions that govern the
speciation of As mostly involve manganese (hydr)-oxides and reduced sulfur species produced by the sulfate-
reducing bacteria. Bacterial activity is also responsible for the inter-conversion between As(V) and As(III), as
well as for the production of methylated arsenic species. In surficial sediments, sorption processes also control
the fate of inorganic As(V), through the formation of inner sphere complexes with iron (hydr)-oxides, that are
biologically reduced in buried sediment. Arsenic species can also be bound to organic matter, either directly to
functional groups or indirectly through metal complexes. Finally, even if the role of reduced sulfur species in
the cycling of arsenic in sediments has been evidenced, some of the transformations remain hypothetical and
deserve further investigation.

© 2014 Elsevier B.V. All rights reserved.
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
2. General points on As speciation in solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
3. Redox reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424

3.1. Oxidation of As(III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
3.1.1. Oxygen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
3.1.2. Iron (hydr)-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
3.1.3. Manganese (hydr)-oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
3.1.4. Bacterial activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
3.1.5. Other oxidants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

3.2. Reduction of As(V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
3.2.1. Sulfides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
3.2.2. Thio-organic components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
3.2.3. Biological activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
3 320434822.
.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2014.10.011&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2014.10.011
mailto:Gabriel.billon@univ-lille1.fr
Unlabelled image
http://dx.doi.org/10.1016/j.scitotenv.2014.10.011
Unlabelled image
http://www.sciencedirect.com/science/journal/00489697
www.elsevier.com/locate/scitotenv


424 J. Gorny et al. / Science of the Total Environment 505 (2015) 423–434
3.3. Reduction of As(III) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
3.4. Oxidation of As(−I) and As(II) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

4. Reactions of dissolution/precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
5. Reactions of adsorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

5.1. Sorption onto mineral surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429
5.2. Sorption involving organic matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

6. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
1. Introduction

The behavior of arsenic in aquatic systems has been the subject
of intense researches due to its potential toxicity towards organ-
isms and human life (see for instance, the particularly alarming sit-
uation in Bangladesh in relationship with the contamination of
drinking water; Argos et al., 2010; Berg et al., 2001). Unraveling
the complexity and dynamic of As speciation in both oxic and anoxic
environments has prompted a considerable research effort. Natu-
rally present in the earth's crust (ranking as the 20thmost abundant
element) (Dowdle et al., 1996), arsenic is generally more concen-
trated in groundwaters, and important efforts have been made to
limit the concentration of As in drinking water especially from
wells (the recommended limit of arsenic in drinking-water by the
World Health Organization is currently 10 μg L−1; Burgess et al.,
2010). The concentration of As has increased in numerous conti-
nental water systems due to anthropogenic activities linked to
painting, mining, copper smelting, production of glass and electron-
ic wastes, waste disposal, use of certain pesticides and herbicides
(and wood preservative), animal feeding, or burning of fossil fuel
(Santelli et al., 2001; Drahota et al., 2009).

Extended research on the behavior of As in freshwater systems has
been carried out with a focus on evaluating the sources of contamina-
tion (Razo et al., 2004; Tessier et al., 2011), baseline concentration
determination (Chen et al., 2001; Chen and Kandasamy, 2008),
chemical speciation of As both in water and organisms (Šlejkovec
et al., 2004; Raber et al., 2012; Cullen, 2014), seasonal effects on As
behavior (Fattorini et al., 2008; Howard et al., 1995), and the impact
of eutrophication processes on the mobility of As (Azizur Rahman and
Hasegawa, 2012). However, less attention has been paid to the fate of
As in the surface sediments of freshwater ecosystems, especially regard-
ing its speciation. Indeed, due to the difficulty of handling anoxic sedi-
ments and of determining As species in pore waters, most studies are
focused on the determination of the total As concentration (O'Day
et al., 2004; Alves et al., 2011) associated with a modeling approach
thatmainly includes thermodynamic equilibrium calculations and reac-
tive transportmodeling (Sracek et al., 2004; Smith and Jaffé, 1998; Dang
et al., 2014). Below the water–sediment interface, reduction of iron
(hydr)oxides, oxidation of organicmatter and bacterial activity general-
ly result in an increase of As concentration in pore waters (Sullivan and
Aller, 1996;Widerlund and Ingri, 1995). Since it is well known that sed-
iments act as an efficient trap for particulate pollutants, early diagenetic
processes may liberate dissolved species that can diffuse back to the
overlying waters (Belzile and Tessier, 1990). Because of the complexity
of the water–sediment composition, its heterogeneity and the poor
spatial and temporal resolution of the dissolved As profiles that could
be experimentally obtained, quantification of these fluxes still remain
uncertain even if sediments act as a source of dissolved As for the
overlying waters in some systems (Chaillou et al., 2003).

As the cycling of As in surface sediments is still not fully understood,
several studies have focused on single reactions with the aim of
providing further information on the reaction mechanisms, as well as
thermodynamic and kinetic data. Reactions of interest include abiotic
mechanisms such as sorption (e.g. arsenic adsorption on ferrihydrite,
Raven et al., 1998 or iron sulfides, Bostick and Fendorf, 2003), oxida-
tion–reduction processes (e.g. redox transformation of As by Fe(II)-acti-
vated goethite, Wilkin et al., 2003a) or complexation (e.g. the evidence
of new As species in complexes between As(V) and polysulfides,
Couture and Van Cappellen, 2011). Reactions driven by bacterial com-
munities were also considered (e.g. oxidation of As(III), Silver and
Phung, 2005, or formation of methylated species, Bentley and
Chasteen, 2002).

The main purpose of this paper is to review the geochemical and
biological transformations of arsenic that might occur in surface
sediments, both in the liquid and solid phases. A particular focus
will be the redox abiotic and biotic transformations of arsenic, the
sorption processes of As species, as well as the role played by organic
matter on the mobility of As in sediments. The main reactions of pre-
cipitation/dissolution of As species will be addressed. Some general
pathways will be summarized, such as affinity of As(V) towards iron
(hydr)-oxides, bacterial methylation of As(III) and As(V) and precipita-
tion of As with reduced sulfide species. Finally, wewill discuss the stabil-
ity of other As species that have only been evidenced from model
solutions or thermodynamic equilibrium calculations, with an emphasis
on the stability of As(V) in sulfidic environments.

2. General points on As speciation in solution

In solution, inorganic arsenical species at oxidation states+III and+V
form oxo-anions that can be more or less protonated. The successive pKa

values of arsenate species [As(V); HxAs+VO4
−3 + x with x = 0 to 3]

are 11.53, 6.97 and 2.20 whereas the pKa values of arsenite [As(III);
HxAs+VO3

−3 + x with x = 0 to 3] are successively 13.40, 12.13 and 9.22
(Prohaska and Stingeder, 2005). For pH values commonly found in the
sediments ranging between 5 and 9 (Boyd, 1995; Mudroch et al., 1998),
H2As+VO4

−, HAs+VO4
2− and H3As+VO3 represent the main free inorganic

As species (Table 1). In acid mine drainage (AMD), pH values can drop
down to 2 or less and the inorganic As(III) and As(V) species are fully pro-
tonated. Although the behavior of As in these very peculiar systems will
not be detailed in this review, some articles and reviews focus specifically
on arsenic in AMD (Johnson and Hallberg, 2005; Cheng et al., 2009).

As(III) can also form carbonate complexes As+III(CO3)2−, As+III(CO3)+

and As+III(CO3)(OH)2− in anaerobic environments (Silver and Phung,
2005). However, these species are thermodynamically unstable, so
that even at slightly basic pH and with [HCO3

−] closed to 200 mg L−1,
As–carbonate complexes only represent a few percent of the total arsenic
(Bentley and Chasteen, 2002; Oremland et al., 2000; Han et al., 2007a).

3. Redox reactions

Arsenic behavior in surface sediments is partly controlled by redox
reactions. In aquatic systems, including the overlying water and sedi-
mentary compartment, the main As oxidation states in the liquid and
solid phases are V, III, and to a lesser extent II and − I. The main redox
couples possibly involved in the redox speciation of As are: O2/H2O,
Mn(IV)/Mn(II), NO3

−/N2, NO3
−/NO2

− Fe(III)/Fe(II), SO4
2−/HS− and CO2/

CH4. In Fig. 1, a redox potential scale shows at pH 7 what are the main
theoretical oxidants of As(III) [O2, MnO2 and NO3

−] and the main



Table 1
Summary of relevant studies dedicated to As behavior in surface sediments.

Matrix Particulate phase Surface waters/Porewaters As speciation Ref.

Lake River Sea Range
of pH

Total
As

[As]
exchangeable

[As] in
porewaters

[As] in
surface
water

Range of
dissolved
Fe2+

Range of
dissolved
Mn2+

Range of
dissolved
sulfides

Species
detected

Where? And why?

μg g−1 μg g−1 μg L−1 μg L−1 mg L−1 mg L−1 mg L−1

x b1400 b220 (Smith and
Jaffé, 1998)

x 8.2 b50 b4 (0.1 M
NaOH)
b12 (0.1 M
HCl)

b45 b13,500 b7920 (Dang
et al., 2014)

x x b12 b225 b38 (Sullivan
and Aller,
1996)

x b12 b100 b30 b20 (Widerlund
and Ingri,
1995)

x 4–8.4 b1.4 b45 b45 (Belzile and
Tessier,
1990)

b150 b6 b4 As(III),
As(V)

As(III) is predominant below the
water/sediment interface.

(Chaillou
et al., 2003)

x 9.8 b12 103 b100 As(III),
As(V), thio-
arsenic
components

Shift in As speciation from As(V)
to As(III) with the decrease of
dissolved oxygen contents.

(Welz and
Šucmanová,
1993)

x b10 As(III),
As(V),
DMAAIII,
DMAAV,
MMAAIII,
MMAAV

Organic As species can be the main
species in oxic zones

(Rey et al.,
2004)

x b45 10−3(1 M
CH3COONa)

b10 b5500 As(III),
As(V),
DMAAIII,
DMAAV,
MMAAIII,
MMAAV

Phytoplankton produces
methylated As species in surface
waters. Seasonal variation
between inorganic and organic As
species is observed in the
exchangeable fraction of surface
sediment (0–2 cm). Organic As
species are linked to the
degradation of organic matter, the
reductive dissolution of (oxo)-
hydroxides and/or bacterial
methylation.

(Han et al.,
2007b)

x b3 b5 10−2 b2 As(III),
As(V),
MMAAV,
DMAAV

Methylated species are more
present in summer than inorganic
species due to the intensive
phytoplankton activity.

(Mudroch
et al., 1998)

x b35 b30 As(III),
As(V),
MMAAV,
DMAAV,
TMAO

Inorganic As species are more
abundant than organic As ones.

(Boyd,
1995)

x b3 As(III),
As(V)

As(III) becomes the main species
under anoxic conditions

(Cutter,
1992)

x b7 103 b45 b50 b20 As(III),
As(V)

Inorganic As(III) is more abundant
than inorganic As (V) under
anoxic conditions.

(Aggett and
Kriegman,
1988)

b250 (1 M
HCl)

b1500 As(III),
As(V),
MMAAV,
DMAAV

The abundance of As species
decreases with the depth in the
following order:
As(III) N As(V) N organic As
species.

(Riedel
et al., 1987)
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theoretical reducers of As(V) [HS−, CH4, Fe2+]. In the following sections,
identification of chemical oxidants and reducers able to change the
redox speciation of As in surface sediments will be presented. In
addition, several of these redox transformations are partly controlled
by bacterial activity; for instance, the inter-conversion between As(III)
and As(V) or the formation of organic As(V) and As(III) species. These
aspects will also be addressed.
3.1. Oxidation of As(III)

According to the literature, only manganese (hydr)-oxides and
the bacterial activity are able to oxidize quantitatively As(III) in the
range of pH generally encountered in aquatic environments
(i.e. pH 5–9, order of magnitude) (Anderson et al., 1992; Lafferty
et al., 2010a).
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Fig. 1. Redox scale of environmentally relevant redox couples. The Eh and pe values (with Eh= 0.059 pe)were calculated at pH7with concentrations of all dissolved constituents equal to
1 M except for Fe2+ (10−5 M), and CO3

2− (3 10−3 M). Adapted from (Borch et al., 2009).
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3.1.1. Oxygen
Although thermodynamic data predicts that dissolved oxygen can

quantitatively oxidize As(III) (Fig. 1), the reaction kinetic is particularly
slow with half-times ranging from several months to a year (Smedley
and Kinniburgh, 2002; Santini and vanden Hoven, 2004). The oxidative
dissolution of As2S3 (orpiment) is also known to occur in the presence of
dissolved oxygen, thus releasing As(III) in solution accompanied by the
oxidation of S(− II) into SO4

2− (Eq. (1)). However, the subsequent
oxidation of As(III) to As(V) did not occur totally with a production of
As(V) lower than 40% (Eq. (2)) (Lengke and Tempel, 2002).

As
þIII

2S3 þ 6O2 þ 6H2O→2H3As
þIII

O3 þ 3SO
2−
4 þ 6H

þ ð1Þ

As
þIII

2S3 þ 7O2 þ 6H2O→2H2As
þV

O
−
4 þ 3SO

2−
4 þ 8H

þ
: ð2Þ

3.1.2. Iron (hydr)-oxides
Oscarson et al. (1981) have shown that no significant redox reaction

occurs between amorphous iron (hydr)-oxides and As(III) after 72 h of
mixing at pH 7 in the absence of oxygen. More recently, similar results
have been obtained with green rust, goethite, magnetite or ferrihydrite
on a time scale of 24 h at pH 7 (Wilkin et al., 2003a; Planer-Friedrich
et al., 2010; Planer-Friedrich and Wallschläger, 2009) (without O2).
However, the fast oxidation of As(III) mediated by the photochemical
reduction of dissolved Fe(III) have been pointed out in several studies
(Azizur Rahman and Hasegawa, 2012; O'Day et al., 2004; Kumar and
Riyazuddin, 2010) following the process represented in Eq. (3)
(McCleskey et al., 2004):

2Fe
3þ þ H3As

þIII
O3 þ H2O þ hν→2Fe

2þ þ H2As
þV

O
−
4 þ 3H

þ
: ð3Þ

Wang et al. (2013) performed several laboratory experiments with
the aim of determining themain parameters [such as pH, concentration
of humic acids (HA) and nitrogen] that can affect the photo-oxidation of
As(III) to As(V) on natural goethite in suspended solution. They showed
that for a reaction time of 6 h, pH values ranging between 3 and 6, and
with an initial concentration of As(III) and goethite fixed at 100 μg L−1

and 100 mg L−1, respectively, the efficiency of the photochemical
oxidation decreased gradually as pH increased, from 80% at pH 3 to
23% at pH 6. These results indicated that photo-oxidation of As(III)
induced by goethite could contribute significantly to As(III) transforma-
tion in environmental systems, especially in acidic surface waters.
The results are particularly pertinent for acid-mine drainage (AMD),
where pH values generally range between 2 and 4 (Bigham et al.,
1996). However, the presence of HA in solution resulted in a significant
decrease of As(III) photo-oxidation due to the competition between HA
and As(III) for active species such as hydroxyl radicals, the affinity of
which to HA is high. For example, with 5 mg L−1 of HA at pH 3, As(III)
photo-oxidation efficiency decreased by 50% (Lafferty et al., 2011).
Moreover, the oxidation of As(III) can occur without dissolved oxygen,
even if the efficiency of the process is slightly reduced. Several factors
explain this reduction, as the absence of some radical species (e.g. •O2

−,
HO2

•) generated by O2. In addition, reaction intermediates can react di-
rectly with O2 during the oxidation of As(III) into As(V) (Buxton et al.,
1988). The complexation reactions between Fe(III) and some ligands
can also affect the photochemical oxidation of As(III). For example,
Emett and Khoe (2001) have established that Fe(III)OH2+ in acidic solu-
tionwas not the only species that could generate radical species capable
of transforming As(III) to As(V). In a solution containing Cl−, the Fe(III)
Cl2+ complex is also a source of free-radical chlorine able to catalyze
photo-oxidation of As(III).

Furthermore, Ona-Nguema et al. (2010) have demonstrated that the
oxidation of As(III) to As(V) bymagnetite or ferrihydrite in the presence
of dissolved Fe(II) can occur at neutral pH under oxic conditions. This
oxidation can be interpreted as the result of a Fenton-type reaction in-
volving Fe(II) oxidation by molecular oxygen leading to the formation
of hydroxyl radicals or other highly oxidant species (e.g. •O2

− and
H2O2). The latter are then able to oxidize As(III) into As(V) which can
in turn adsorb onto iron (hydr)-oxides produced during the oxidation
reaction. In aquatic environments, the oxidation of Fe(II) and As(III)
can take place simultaneously, as for instance, during sediment particle
resuspension in the water column (Bostick et al., 2005). This study
points out that the preservation of natural samples can be complicated
for speciation analysis. Amstaetter et al. (2010) reported oxidation of
As(III) to As(V) under anoxic conditions in the simultaneous presence
of goethite and Fe(II) at neutral pH. In this case, reactive Fe(III)* species
are suggested to be formed after the sorption of dissolved Fe(II) on

image of Fig.�1
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Fe(III) phases, and this intermediate then transforms into goethite
(crystallization). During the crystallization process, it is supposed that
As(III) forms a ternary complex [≡Fe(III)–Fe(III)*–As(III)] before its ox-
idation (Wilkin et al., 2003a).

3.1.3. Manganese (hydr)-oxides
As presented in Eq. (4), the oxidation of As(III) to As(V) by manga-

nese (hydr)-oxides occurs in three main steps (Lafferty et al., 2010a):
(i) formation of an inner-sphere complex between As(III) and a surface
site ofMn(IV) (hydr)-oxides; (ii) oxidation of As(III) to As(V) combined
with generation of Mn2+; and (iii) successive desorption of As(V) and
Mn2+. The kinetic rate of the reaction is initially fast, but slows down
significantly due to passivation of the manganese-(hydr)-oxide surface
(see next paragraph). Scott and Morgan (1995) showed that for pH
ranging from 4 to 8, with an initial concentration of As(III) and with
manganese (hydr)-oxides fixed respectively at 100 μmol L−1 and
0.25 g L−1, the half-concentration of As(III) is oxidized within 10 min
whereas the remaining part disappears after 80 min.

MnO2ðsÞ þ H3AsO3 þ H
þ→Mn

2þ þ H2AsO
−
4 þ H2O: ð4Þ

Passivation of themanganese-(hydr)-oxide surface by adsorption of
As(V) and Mn2+ accounts in part for the rapid decrease in the reaction
rate with time. Depending on the surface charge of the manganese
(hydr)-oxides, it decreases the number of active surface sites (Lafferty
et al., 2011). Another mechanism may involve monodentate internal
complexation between ≡Mn(IV) and As(III), and/or Mn2+ that induces
partial changes of the oxidation state of a fraction of theMn(IV) surface
sites into Mn(III) (Lafferty et al., 2010a,b). Even if this reduction does
not prevent from the oxidation of As(III) into As(V) (Eq. (5)), the
reactivity of ≡Mn(III) surface sites is found to be less important than
that of ≡Mn(IV).

2ð≡MnOOHÞ þ H3AsO3 þ 3H
þ→2Mn

2þ þ H2AsO
−
4 þ 3H2O: ð5Þ

Other abiotic processes can also limit the oxidation rate of As(III), as
a competition of various species ontoMn (hydr)-oxide reactive adsorp-
tion sites (e.g. Ca2+ and PO4

3−, Lafferty et al., 2011) or formation of
surface precipitates that inhibit the reactivity of Mn (hydr)-oxides
(e.g. aluminum and iron (hydr)-oxides, calcite, organic matter coating).
It is worth noting that the presence of dissolved oxygen does not
interfere with the oxidation kinetics of As(III) into As(V) onto Mn
(hydr)-oxides (Oscarson et al., 1983).

3.1.4. Bacterial activity
Bacteria species, e.g.: Alcaligenes faecali, Agrobacterium tumefaciens,

and Rhizobium sp., are able to synthetize arsenite oxidases, which
permit the enzymatic oxidation of As(III) into As(V) (Anderson et al.,
1992; Inskeep et al., 2007). Oxidase enzymes can be either periplasmic
(α-Proteobateria) or bound to external membrane (A. faecali) (Emerson
and Moyer, 1997). Bacterial oxidation allows bacteria to obtain an
electron source required for their metabolism, and can be viewed as a
process of detoxification since inorganic As(V) is less toxic than
inorganic As(III).

3.1.5. Other oxidants
As for nitrate and sulfate, the literature does not contain any

information concerning their ability to oxidize chemically As(III) to
As(V), although oxidation by such oxidants does seem to be thermody-
namically possible, as shown in Fig. 1.

3.2. Reduction of As(V)

The reduction process of As(V) to As(III) is mainly effective in the
presence of sulfides and a bacterial activity. Fe(II), Mn(II), NO2

− and
NH4
+ are not recognized as relevant As(V) reducing agents in aquatic

systems.
3.2.1. Sulfides
Although the formation of stable thio-arsenical species may in-

crease the apparent solubility of As (Welz and Šucmanová, 1993),
As speciation in sulfidic waters is still poorly understood due to the
difficulty to implement reliable analytical procedures (Razo et al.,
2004; Delnomdedieu et al., 1994; Suess et al., 2011). Some studies
have established the existence of both thioarsenites (AsO3 − xSx3−

with x = 0 to 4) and thioarsenates (AsO4 − xSx3− with x = 0 to 4) as
important aqueous species (O'Day et al., 2004; Wilkin et al., 2003b;
Millero et al., 1987), but the existence of thioarsenates may result
from an analytical artifact. For example, Planer-Friedrich et al.
(2010) have experimentally observed that thioarsenite can be
decomposed into inorganic As(III) under anaerobic conditions, or into
thioarsenate under aerobic conditions during IC–ICP-MS analysis
when using a highly alkaline eluent. Using thermodynamic
equilibrium calculations, Couture and Van Cappellen (2011)
suggested the presence of stable thioarsenates in sulfidic pore
waters via oxidation of As(III) by elemental sulfur. Other results
suggest that in sulfide-containing solutions without any oxidants,
As(III) undergoes disproportionation to thioarsenates and elemental
arsenic (Stauder et al., 2005).

Dissolved hydrogen sulfide can reduce As(V) into As(III). These ex-
periments were performed in anoxic condition at pH 4 in the presence
of inorganic As(V) and sulfides at initial concentrations of 133 μM and
266 μM, respectively (Rochette et al., 2000). Several intermediate
forms of thioarsenic species are produced during the reaction
(Eqs. (6)–(11)), and these can remain in solution for several days.
Once the production of As(III) occurs, As2S3 (orpiment) can precipitate
depending on the concentrations of dissolved sulfides (Eq. (11))
(Rochette et al., 2000). However, these reduction mechanisms should
be consolidated by additional studies on arsenic speciation in sulfidic
waters.

H2As
V
O

−
4 þ H2S↔H2As

V
O3S

− þ H2O ð6Þ

H2As
V
O3S

− þ H2S↔H2As
V
O2S

−
2 þ H2O ð7Þ

H2As
V
O2S

−
2 þ H

þ↔H3As
III
O2S⋯S ð8Þ

H3As
III
O2S⋯S↔H3As

III
O2S þ 1=8S8 ð9Þ

H3As
III
O2S þ H2O↔H3As

III
O3 þ H2S ð10Þ

2H3As
III
O2S þ H2S↔As

III
2 S3 þ 4H2O: ð11Þ

Sun (2010) performed several laboratory experiments to show the
main factors— such as pH, presence of Fe(II), S° and O2 —which can af-
fect the reduction of As(V) to As(III) in sulfidic aquatic systems.Without
oxygen, a faster reduction rate of As(V) was observed at pH 4 compared
with pH 7 (and pH 10), with half-reaction times of 40 h and N140 h, re-
spectively. This difference can be explained by the fact that H2S species,
which is prevalent at pH b 7, is more reactive than HS−. As for S°, its
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association with sulfides to form polysulfides would promote reduc-
tantsmuch stronger than S2− (Sun, 2010), resulting in a faster reduction
of As(V).

It is well known that in anoxic water and porewater, Fe2+ precipi-
tates quickly with sulfides to produce iron sulfides (e.g. troilite,
mackinawite, greigite) that subsequently turn into pyrite under various
kinetic rates. Since the reduction of As(V) by Fe(II) has never been
commented upon and does not seem to be promoted based on thermo-
dynamic calculations, the loss of soluble As(V) by the addition of Fe2+ is
instead attributed to its sorption and/or co-precipitation with iron sul-
fide minerals. Besides, the fact that the reduction rate of As(V) slows
down progressively can be attributed to sulfide oxidation in aerobic
media, enhanced by the formation of Fe(III) (Millero et al., 1987;
Millero, 1991) and to the possible partial reoxidation of As(III) during
the oxidation of Fe2+ (see Section 3.1). The presence of oxygen
does not re-oxidize As(III) into As(V). However, oxygen has been
demonstrated to immediately oxidize thioarsenites into thioarsenate
(Razo et al., 2004), thus inhibiting any eventual reduction process of
As(V) to As(III).

3.2.2. Thio-organic components
Delnomdedieu et al. (1994) have observed that glutathione (GSH)

can cause the reduction of both As(V) into As(III), and monomethyl
arsenic(V) acid (MMAAV) into monomethylarsine (MMAIII). The redox
reaction is further enhanced by the formation of a stable complex be-
tween glutathione and As(III) at pH values below 7.0–7.5. The capacity
to form such stable As(III)–thiol complexes is also used in analytical
methods, where L-cysteine is commonly used to transform As(V) to
As(III) (Cullen and Reimer, 1989; Thomas et al., 2004). Furthermore,
cysteine is one of the molecular constituents of arsenate reductase,
used by some bacteria to reduce As(V) into As(III) (Gihring and
Banfield, 2001).

3.2.3. Biological activity
The biological transformations of both inorganic and organic

As(V) species into As(III) species can be achieved through the bacterial
activity that occurs in aquatic systems, through either detoxification or
dissimilatory reduction. Because of the inherent toxicity of arsenic,
which depends on the species (As(III) N As(V) N MMAAV N DMAAV;
Prohaska and Stingeder, 2005) and its structural analogy with ortho-
phosphate species, numerous micro-organisms have developed detoxi-
fication processes to convert absorbed As— especially inorganic As that
is recognized as the most toxic species — into other less toxic organic
species and/or into species that can be more easily extracted from the
biological cell through the “As(III)-efflux system” (Gihring and
Banfield, 2001). The methylation of inorganic As is thought to be a pro-
cess of detoxification which can be performed by some mushrooms
and bacteria in sediment (Cullen and Reimer, 1989). In the case
of As(V) methylation, the first step consists in the conversion of
AsVO4
3-

AsIIIO3
3-

CH3AsvO3
2-

CH3AsIIIO-

(CH3)2

+ 2 e-

+ CH3
+

+ 2 e-

+ CH3
+

+ 2 

MMAAV

DM

X = Possible final products of bacterial methy

Fig. 2. Hypothetical scheme of bacterial methylation, wher
As(V) into As(III), followed by one or several methylation steps
(Fig. 2) to form less toxic organo-arsenical species, such as MMAAV

[monomethyl arsenic(V) acid], DMAAV [dimethyl arsenic(V) acid],
TMAO (trimethylarsenic oxide) and eventually trimethylarsine
[As+III(CH3)3] (Cullen, 2014; Thomas et al., 2004; Kosmulski, 2011). It
is worth noting that under anaerobic conditions, some bacteria, fungi
and yeasts are able to transform methylated As species into volatile As
forms, such as arsine (As+IIIH3) and other methylated arsine species
(Bissen and Frimmel, 2003a; Suess and Planer-Friedrich, 2012). Signifi-
cant levels of organic As species can be found seasonally in surface
water (Mudroch et al., 1998; Rey et al., 2004;Han et al., 2007b). Howev-
er, these species represent generally less than 5% of the total As in inter-
stitial water (Boyd, 1995) or in the As mobile fraction of the sediment
(Huerga et al., 2005).

The second bacterial transformation aimed at limiting As(V) toxicity
is the dissimilatory reduction, also known as bacterial respiration. This
has been described for some bacterial metabolisms in various compart-
ments of the geosphere, e.g. aquifers, freshwaters, alkaline and salt
lakes, and hydrothermal springs (Dowdle et al., 1996; Oremland et al.,
2000; Ma and Lin, 2012). The bacterial respiration of As is a process in
which the reduction of As(V) dissolved or adsorbed onto the mineral
surface is coupled with the oxidation of a wide variety of electron
donors (e.g. H2, lactate, malate) (Laperche et al., 2003). Currently, no
bacteria species is known to use strictly As(V) as an electron acceptor,
and other oxidants like Cr(VI), Fe(III), NO3

−, SO4
2− and U(VI) can be

employed by these bacteria as well. In fact, these microorganisms are
considered as opportunists and can harness energy from one electron
acceptor rather than another if the species reduction is thermodynami-
cally more favorable and its bioavailable concentration is high enough
(Fendorf et al., 2010). It is also worth noting that the detoxification
process can occur in oxygenated water, explaining partly the presence
of As(III) even in oxic media (contrary to thermodynamic predictions).

3.3. Reduction of As(III)

Arsenopyrite [Fe(II)As(− I)S(− I)] and realgar [As(II)S(− II)] are
often present in sediments and soils (Nicholas et al., 2003). The unusual
oxidation states of As in these minerals, i.e.−I and+II, appear to result
from the reduction of As(III) by iron sulfide minerals (pyrite, troilite,
greigite, etc.). Bostick and Fendorf (2003) suggest a formation mecha-
nism of FeAsS in which As(III) may adsorb on a sulfide precipitate,
before being reduced into As(− I), as illustrated Eq. (12). However,
this mechanism still needs to be confirmed.

3FeS þ H3AsO3→FeS2 þ FeAsS þ FeðOHÞ3: ð12Þ

NativeAs is a product of low-temperature epithermalmineralization
(50–200 °C) under sulfur deficient and strongly reducing conditions. In
low-temperature sedimentary conditions (0–50 °C) there is frequently
AsVO2

(CH3)2AsIIIO-
e-

(CH3)3AsVO+ CH3
+

(CH3)3AsIII+ 2 e-

AAV

TMAO

Trimethylarsine

lation

e enzymatic species are not included in the reactions.

image of Fig.�2
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muchmore sulfur and iron available than arsenic, so that As is incorpo-
rated into arsenian pyrite or orpiment rather than occurring under the
native form (Nordstrom and Archer, 2003). Concerning As(− III), no
information concerning its possible presence in river sediment is
recorded in the literature.

3.4. Oxidation of As(− I) and As(II)

Lengke and Tempel (2002, 2003) and Walker et al. (2006) have
demonstrated that dissolved oxygen was able to oxidize As+IIS and
FeAs−IS at pH values close to 7 (Eqs. (13) and (14)). The oxidation
would take place on the mineral surfaces, leading to the formation of
As(III) that is further desorbed (Lengke and Tempel, 2003).

4FeAs
−I
S þ 11O2 þ 6H2O→4Fe

2þ þ 4H3As
þIII

O3 þ 4SO
2−
4 ð13Þ

As
þII

S þ 2:25O2 þ 2:5H2O→H3As
þIII

O3 þ SO
2−
4 þ 2H

þ
: ð14Þ

In oxygen-free solutions, the oxidation of FeAsS by Fe(III) in mine
wastes produces “scorodite” (FeIIIAsVO4) as shown in Eq. (15) (Alves
et al., 2011). This oxidation is only limited by the ferric iron available
in solution unless iron-oxidizing bacteria (e.g. Acidithiobacillus
ferrooxidans, Thiobacillus ferrooxidans) are present to reoxidize directly
the Fe(II) present in arsenopyrite into Fe(III) (Belzile and Tessier,
1990; Chaillou et al., 2003; Raven et al., 1998).

FeAs
−I
S þ 14Fe

3þþ 10H2O→14Fe
2þþ SO

2−
4 þ FeAs

þV
O4:2H2O þ 16H

þ
:

ð15Þ

4. Reactions of dissolution/precipitation

Since the sedimentary particles contain sulfur, alkaline and transi-
tion metals in high proportion (for some, N1%), the solubility of As in
porewatersmay be partly controlled by the formation of several precip-
itates with these elements. The topic has been studied extensively and
some reviews provide an overall view of the reactions of precipitation/
dissolution involving As (Smedley and Kinniburgh, 2002; Drahota
et al., 2009; Mandal and Suzuki, 2002).

Although As(V) is known to form many insoluble compounds
with various metals such as Cr, Pb or Cu [CrAs+VO4, Pb3(As+VO4)2,
Cu(As+VO4)2, etc.], the concentration ofmetals in porewaters is general-
ly too low to achieve the solubility product of the precipitates. It appears
that only scorodite (FeAs+VO4·2H2O) and magnesium arsenite
[Mg3(As+VO4)·8H2O] for As(V), and various associations between re-
duced As and sulfides (As+III

2S3, As+IIS and FeAs−IS) can precipitate. For
more information, see the reviews on arsenic dissolution/precipitation,
e.g. Smedley and Kinniburgh (2002), Drahota et al. (2009), and Mandal
and Suzuki, (2002). In addition, numerous studies in the field of water
treatment have shown that inorganic As(V) can co-precipitate under
certain physico-chemical conditions (e.g. pH and specific solubility of
the precipitating agent) with Al2(SO4)3, Al(OH)3, CaCO3, Fe(OH)3, FeCl3,
Mg(OH)2 and MnO2 (Bissen and Frimmel, 2003a,b; Clara and
Magalhaes, 2002). Masscheleyn et al. (1991) have noticed that the solu-
bility of arsenic is strongly dependent on redox potential (Eh) variations
in the subsurface environment. Generally, the solubility of As tends to
increase with decreasing Eh values (Ye et al., 2013). Indeed, since
As(V) is the dominant species in oxic sediment and overlying waters
(+200 to +500 mV), it is efficiently adsorbed and/or (co)-precipitated
with various minerals, particularly iron and manganese (hydr)-oxides.
Further reduction of these (hydr)-oxides under moderately reducing
conditions (0 to +100 mV) results in the partial dissolution of As(V) in
porewaters. However, when the sediment turns strongly anoxic (0 to
−200 mV), reduction of As(V) into As(III) occurs, combined with the
production of sulfides. As As(III)–S(− II) complexes are very stable in
solution, the concentration of As may still increase unless the solubility
product of As2S3 is achieved.

5. Reactions of adsorption

Arsenic can adsorb on various solid phases encountered in sedi-
ments, including aluminum, iron and manganese (hydr)-oxides, clays
and organic matter. The distribution between the liquid and the solid
phases depends on arsenic concentration, arsenic speciation, competing
ions, pH, and adsorption properties of the solid surface, e.g. coating or
isomorphic substitution (Fendorf et al., 2010; Bissen and Frimmel,
2003b; Wang et al., 2009).

Usually, adsorption mechanisms can be described as non-specific ad-
sorption (outer-sphere surface complexation) and specific adsorption
(inner-sphere surface complexation). Note that the sphere of hydration
is only maintained for the non-specific adsorption. Inner-sphere com-
plexes are characterized by coordinated covalent bonds which are more
stable than the electrostatic interactions of the outer-sphere complexes.
The formation of inner-sphere complexes is the main mechanism for
the sorption of As(III) and As(V) (Cheng et al., 2009; Arai et al., 2005;
Catalano et al., 2008; Manning et al., 1998; Grossl et al., 1997) as illustrat-
ed in Fig. 3, and involves specific functional groups at themineral surface,
such as hydroxyl groups (Komárek et al., 2013).

5.1. Sorption onto mineral surfaces

Because of the amphoteric nature of mineral surfaces, the surface
charge of hydroxyl groups is positive when the pH is below pH of zero
charge (point of zero charge), and negative when pH N pH of zero
charge. It can be described in Eqs. (16) and (17), where≡X corresponds
to a surface site:

≡X–OH↔≡X–O− þ H
þ ð16Þ

≡X–OHþ
2 ↔≡X–OH þ H

þ
: ð17Þ

A positive surface charge commonly promotes the complexation of
anionic arsenical species such as As(V), DMAAV and MMAAV that are
negatively charged for pH values higher than 2.2, 3.4 and 1.6 respective-
ly. The variations of surface charge, as a function of pH for some min-
erals present in sediments, are represented in Fig. 4. This indicates the
minerals capable of adsorbing those anionic arsenical species in the
range of pH observed in sediments. It includes all the minerals from
α-MnO2 (for acidic pH values in sediments around 5) tomagnesiumox-
ides. Sorption processes of As(III) aremore complex becauseH3As+IIIO3,
which is the main species at pH 5–9, is electrically neutral. As(III) is
essentially adsorbed on iron (hydr)-oxides, and its adsorption is not
pH-dependent and not as strong as As(V). Dixit and Hering (2003) ob-
served in batch experiments [50 mM As(III) or As(V) mixed with
30 mg L−1 hydrous ferric oxides] that sorption of As(V) onto iron
(hydr)-oxides is more favorable below a pH of zero charge of oxides
ranging between 7 and 10 (Kosmulski, 2011). As(III) exhibits a different
behavior since its adsorption capacity is almost constant (around 80%)
in the range of pH 5–9.

At pH 4, Fendorf et al. (2010) showed experimentally that
the affinity of As(V) for several minerals decreases as follows:
iron (hydr)-oxides (40 to 2100 mmol kg−1) ~ aluminum
(hydr)-oxides (20 to 1700 mmol kg−1) N manganese (hydr)-
oxides (16 mmol kg−1) N aluminosilicates (0.4 to 0.5 mmol kg−1).
These results confirm that Fe and Al (hydr)-oxides are the main
host phases for As(V) adsorption in sediments. Moreover, the amor-
phous forms of iron (hydr)-oxides allow for a better retention of
arsenic than for crystallized ones (Bowell, 1994). It has also been
shown that whatever the pH, inorganic As(V) remains the most im-
pacted species by sorption processes with a retention capacity on
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Fig. 3. Schematic representation of As (III and V) configurations on metal (hydr)-oxide surfaces: (a, b) mononuclear monodentate inner-sphere complexation; (c, d) mononuclear
bidentate inner-sphere complexation; (e, f) binuclear bidendate inner-sphere complexation.
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minerals that decreases in acidic media in the following order:
As(V) ≥ DMAAV = MMAAV N As (III). Above pH 6–7, this ranking of
retention capacity turns to: As(V) N As(III) ≥ MMAAV = DMAAV

(Xu et al., 1991; Redman et al., 2002).
Several anions (CO3

2−, NO3
−, HPO4

2−, SO4
2−, etc.) found in

porewaters with concentrations ranging between μM and mM
levels (Kim et al., 2000), can also affect the sorption of As species
on mineral solid phases. Isotherm experiments performed on a
Mg–Al–CO3 hydroxide have shown that As(V) adsorption capacity
decreases generally in the presence of competing anions in the
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Fig. 4. Evolution of the surface charge of common minerals found in sedim
following order: HPO4
2− N SO4

2− N CO3
2− N Cl− N NO3

− N F− (Hug and
Leupin, 2003). A similar study for As(III), using Fe–Mn (hydr)-oxides
as adsorbent, demonstrated that several anions decrease the sorption
capacity of As(III) as follows: HPO4

2− N SiO3
2− N CO3

2− N SO4
2− (Zhang

et al., 2007). In both cases, HPO4
2− appears to be the main competing

ion due to its chemical similarity with arsenic. That explains why
HPO4

2− is often used as an extracting agent of As in single-step extrac-
tion (Orero Iserte et al., 2004; Georgiadis et al., 2006) or sequential
extraction (Keon et al., 2001; Wenzel et al., 2001; Paul et al., 2009) for
soils or sediments.
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5.2. Sorption involving organic matter

Natural organic matter represents an important phase in sediments,
but its chemical and structural composition is highly variable and only
partially characterized, e.g. aromaticity, elemental composition, nature
and content of functional groups or molecular size. Some functional
groups (\OH,\COOH,\NH2,\SH) are known to potentially influence
As sorption. First, As can adsorb on organic solid phases combined with
the help of some cations (primarily Al, Fe and Mn) forming cationic
bridges between the anionic As species and the negative surface charge
of the particulate organic matter (Redman et al., 2002; Mikutta and
Kretzschmar, n.d.; Buzek et al., 2013). Secondly, direct interactions
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Fig. 5. Summary of arsenic reactions in surface sediment during early diagenetic processes. Ab
monomethyl As(V) acid; DMAAV: dimethyl As(V) acid; * results obtained under oxic condition
between As and some functional groups, such as \SH, \COOH,
\C6H4OH and \NH2, can also occur. For example, Bennett et al.
(2011) developed a selective DGT (Diffusive Gradient in Thin film) for
As(III) based on the affinity between As(III) and \SH group, by using
a 3-mercaptopropyl-functionalized silica gel. Other studies have
demonstrated that As(III) can form stable complexes with dissolved
thio-organic components (cysteine, dithiothreitol, glutathione, etc.)
(Neuberger and Helz, 2005; Buschmann et al., 2006).

Buschmann et al. (2006) evaluated the affinity of all the inorganic As
species for dissolved humic substances using dialysis experiments at
different pH values ranging between 4 and 9. They concluded that
As(V) was always bound more strongly than As(III) whatever the pH
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valuewith amaximumcapacity aroundpH7. For example at pH7.2, the
distribution coefficient of As(III) and As(V) was around 3000 and
18,000 L kg−1, respectively. For As(III) that forms neutral hydroxo com-
plexes [As(OH)3] up to pH 9, the phenolate group is a stronger ligand
than the carboxylate one. The binding capacity is influenced byH+ com-
petition for humic functional groups at low pH values and OH− compe-
tition for As(III) at high pH values. Moreover, the neutral As(OH)3
species might also partly bind to humic acids by hydrophobic interac-
tions. In contrast to As(III), As(V) is negatively charged for pH N 4.6.
Even if both reagents (humic acids and arsenates) are negatively
charged, strong binding involving a liberation ofwater has been pointed
out (Santini and vanden Hoven, 2004).

6. Conclusion

In surface sediments, the fate of arsenic is controlled by abiotic and
biotic reactions, including complexation/de-complexation, sorption,
precipitation/dissolution, redox, detoxification and respiration reac-
tions. This review presents the main mechanisms that have been dis-
covered over the last few years in sediments during early diagenetic
processes, as summarized in Fig. 5. It has been clearly established that
sorption processes on iron hydroxides, the presence of organic matter
and the sulfides phases and bacterial activity represent critical points
for understanding the dynamic of arsenic under redox gradients that
commonly occur in the first centimeters of river sediments.

Although numerous processes have been clearly established by
experiments or deduced from thermodynamic equilibrium calculations,
dedicated studies to experimental speciation of As in pore waters
remains scarce (see summary, Table 1), and additional works are need-
ed to validate the mechanisms occurring at the pore scale and establish
the speciation in sediments. More precisely, the role of reduced sulfurs
on both As speciation andmobility is still not fully understood, although
they should control themobility of both As(III) andAs(V) compounds in
anoxic and sulfidic conditions. Additionally, since these transformations
may occurwithin thefirst cmof the sedimentary columnwhich ismain-
ly under anoxic conditions, alternative sampling and in situ measure-
ment techniques must be developed with the aim of increasing the
spatial resolution and limiting the changes in pore water composition
that could occur during the sampling or/and the treatment in the
laboratory.
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